PERBANDINGAN KINERJA PORTOFOLIO GLOBAL MINIMUM VARIANSI BERDASARKAN EKSISTENSI KENDALA BOBOT ASET POSITIF

Authors

  • Nurwahidah Nurwahidah Universitas Islam Negeri Alauddin Makassar

DOI:

https://doi.org/10.31100/histogram.v7i1.2554

Keywords:

stock, portfolio, Markowitz

Abstract

Investors face high risk in stock investing. It is important to use investment strategies that can minimize risk and maximize return. Building a portfolio is a solution to minimize risk in investing. This sudy compares the perfomance of Global Minimum Variance Portfolio (GMV) without positive weight asset constraint and GMV with positive weight asset constraint. The perfomance of each portfolio is measured by sharpe ratio. The portfolio without positive weight asset builds by Markowitz method with traditional approachment, while the portfolio with positive weight asset builds by Markowitz method with quadratic programming approachment.Based on the conducted research, it describes that GMV potfolio with positive asset weight constrain shows a higher value of sharpe index than GMV portfolio without positive asset weight constraint. Thus, the study concludes that the GMV portfolio with positive asset weight constraint has better performance than the GMV portfolio wtihout positive asset weight constraint.

References

A. S., O., & P. O., A. (2016). Quadratic Programming as An Optimization Tool for Portfolio Management. International Journal of Mathematics and Computer Application Research, 6(2), 16–32.

Ahuja, A. (2015). Portfolio Diverisification In The Karachi Stock Exchange. Pakistan Journal of Engineering, Technology & Science, 1(1).

Bodnar, T., Mazur, S., & Okhrin, Y. (2017). Bayesian estimation of the global minimum variance portfolio. European Journal of Operational Research, 256(1), 292–307.

Febriyanto, F. (2018). Keputusan Diversifikasi Portofolio Investasi Di Era MEA. FIDUSIA : Jurnal Keuangan dan Perbankan, 1(2).

Filrissa, S. G., Titaley, J., & Manurung, T. (2019). Analisis Portofolio Saham Model Markowiz dengan Menggunakan Quadraic Programming. d’Cartesian: Jurnal Matematika dan Aplikasinya, 8(2), 121–126.

John, A., Logubayom, A. I., & J, A.-P. (2017). Portfolio Optimization Using Matrix Approach: A Case of Some Stocks on the Ghana Stock Exchange. International Journal of Accounting, Finance and Risk Management, 2(1), 21–30.

Kiandi, F. (2016). Perlindungan Humum dalam Transaksi Margin Trading dan Short Sales di Pasar Modal. Premise Law Jurnal, 6, 1–18.

Maillet, B., Tokpavi, S., & Vaucher, B. (2015). Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach. European Journal of Operational Research, 244(1), 289–299.

Yang, L., Couillet, R., & McKay, M. R. (2015). A Robust Statistics Approach to Minimum Variance Portfolio Optimization. IEEE Transactions on Signal Processing, 63(24), 6684–6697.

Downloads

Published

2023-03-31

Issue

Section

Articles