KEGAGALAN METAKOGNITIF MAHASISWA DALAM MENYELESAIKAN ILL- STRUCTURED PROBLEM PADA MATERI FUNGSI KUADRAT

Authors

  • Alifiani Alifiani Universitas Islam Malang

DOI:

https://doi.org/10.31100/histogram.v6i2.2443

Keywords:

kegagalan metakognitif, ill structured problem, fungsi kuadrat

Abstract

Penelitian ini dilatarbelakangi oleh kegagalan mahasiswa dalam menyelesaikan ill-structured problem. Langkah penyelesaian ill-structured problem yang digunakan meliputi: representasi masalah, proses solusi, serta monitoring dan evaluasi.  Kegagalan dalam menyelesaikan ill-structured problem ini ditandai dengan kurang tepatnya jawaban yang ditemukan, atau bahkan tidak ditemukannya jawaban yang sesuai. Kegagalan mahasiswa dalam menyelesaikan ill-structured problem ini selanjutnya dikaji dengan menggunakan kerangka kegagalan metakognitif. Adapun kerangka kegagalan metakognitif terdiri dari 3 jenis, yaitu metacognitive blindness, metacognitive mirage, dan metacognitive vandalism. Selanjutnya, penelitian ini bertujuan untuk mendeskripsikan kegagalan metakognitif mahasiswa saat mengerjakan ill-structured problem, khususnya pada materi fungsi kuadrat. Pendekatan yang digunakan dalam penelitian ini adalah pendekatan kualitatif dengan jenis deskriptif eksploratif. Subjek dari penelitian ini terdiri dari 3 orang mahasiswa Pendidikan Matematika Universitas Islam Malang yang mengalami kegagalan saat menyelesaikan ill-structured problem. Ketiga subjek penelitian tersebut, selanjutnya disebut sebagai S1, S2, dan S3. Hasil dari penelitian ini diketahui bahwa S1 mengalami kegagalan metakognitif tipe vandalism, S2 mengalami kegagalan metakognitif tipe mirage, dan S3 mengalami kegagalan metakognitif tipe blindness. Jadi dapat disimpulkan bahwa kegagalan subjek dalam proses penyelesaian ill-structured problem berkaitan dengan ketiga jenis kegagalan metakognitif.

References

Araiku, J., I. N. Parta, and S. Rahardjo. 2019. “Analysis of Students’ Mathematical Problem Solving Ability as the Effect of Constant Ill-Structured Problem’s Employment.†Journal of Physics: Conference Series 1166(1).

Assad, Dorothy Ann. 2015. “Task-Based Interviews in Mathematics: Understanding Student Strategies and Representations through Problem Solving.†International Journal of Education and Social Science www.ijessnet.com 2(1): 17–26. www.ripknet.org.

Baumanns, Lukas, and Benjamin Rott. 2022. “Identifying Metacognitive Behavior in Problem-Posing Processes: Development of a Framework and a Proof of Concept.†International Journal of Science and Mathematics Education (0123456789). https://doi.org/10.1007/s10763-022-10297-z.

Goos, Merrilyn. 2002. “Understanding Metacognitive Failure.†Journal of Mathematical Behavior 21(3): 283–302.

Güner, Pınar, and Hatice Nur Erbay. 2021. “Prospective Mathematics Teachers’ Thinking Styles and Problem-Solving Skills.†Thinking Skills and Creativity 40(February): 100827. https://doi.org/10.1016/j.tsc.2021.100827.

Huda, Nizlel et al. 2016. “University Students Metacognitive Failures in Mathematical Proving Investigated Based on the Framework of Assimilation and Accommodation.†Educational Research and Reviews 11(12): 1119–28.

Kim, Joo Yeun, and Kyu Yon Lim. 2019. “Promoting Learning in Online, Ill-Structured Problem Solving: The Effects of Scaffolding Type and Metacognition Level.†Computers and Education 138(November 2017): 116–29.

Laxman, Kumar. 2010. “A Conceptual Framework Mapping the Application of Information Search Strategies to Well and Ill-Structured Problem Solving.†Computers and Education 55(2): 513–26. http://dx.doi.org/10.1016/j.compedu.2010.02.014.

Liljedahl, Peter, and Jinfa Cai. 2021. “Empirical Research on Problem Solving and Problem Posing: A Look at the State of the Art.†ZDM - Mathematics Education 53(4): 723–35. https://doi.org/10.1007/s11858-021-01291-w.

Magiera, Marta T., and Judith S. Zawojewski. 2011. “Characterizations of Social-Based and Self-Based Contexts Associated with Students’awareness, Evaluation,and Regulation of Their Thinking during Small-Group Mathematical Modeling.†Journal for Research in Mathematics Education 42(5): 486–520.

Ortega, Jeniffer, Patricia Montañes, Anthony Barnhart, and Gustav Kuhn. 2018. “Exploiting Failures in Metacognition through Magic: Visual Awareness as a Source of Visual Metacognition Bias.†Consciousness and Cognition 65(April): 152–68.

Reed, Stephen K. 2016. “The Structure of Ill-Structured (and Well-Structured) Problems Revisited.†Educational Psychology Review 28(4): 691–716.

Santia, Ika et al. 2019. “Ill-Structured Problems : The Case of Quadratic.†Journal on Mathematics Education 10(3): 365–78.

Schraw, G., and R.S Dennison. 1994. “Assessing Metacognitive Awareness.†Contemporary Educational Psychology 19: 460–75.

Shekhar, Medha, and Dobromir Rahnev. 2021. “Sources of Metacognitive Inefficiency.†Trends in Cognitive Sciences 25(1): 12–23. https://doi.org/10.1016/j.tics.2020.10.007.

Tambychik, Tarzimah, and Thamby Subahan Mohd Meerah. 2010. “Students’ Difficulties in Mathematics Problem-Solving: What Do They Say?†Procedia - Social and Behavioral Sciences 8(5): 142–51. http://dx.doi.org/10.1016/j.sbspro.2010.12.020.

Voss, James F. 2006. “Toulmin’s Model and the Solving of Ill-Structured Problems.†Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation: 303–11.

Yimer, A, and N F Ellerton. 2006. “Cognitive and Metacognitive Aspects of Mathematical Problem Solving: An Emerging Model.†Identities, cultures, and learning spaces (1994): 575–82.

Yimer, Asmamaw, and Nerida F. Ellerton. 2010. “A Five-Phase Model for Mathematical Problem Solving: Identifying Synergies in Pre-Service-Teachers’ Metacognitive and Cognitive Actions.†ZDM - International Journal on Mathematics Education 42(2): 245–61.

Zydney, Janet. 2008. “Cognitive Tools for Scaffolding Students Defining an Ill-Structured Problem.†Journal of Educational Computing Research 38(4): 353–85.

Downloads

Published

2022-11-26

Issue

Section

Articles